Understanding the Effect of the Combination of Navigation Tools in Learning Spatial Knowledge
Indoor Navigation Apps
Purpose of Indoor Navigation Apps

- Reaching to the desired destination
- Explore and Learn the environment
Purpose of Indoor Navigation Apps

How these applications can provide such immersive experience?

- Reaching to the desired destination
- Explore and Learn the environment
Basic Structure of Navigation Applications

- Reference Frames
- Navigation Cues
Reference Frames

Map Interface

Video Interface
Navigation Cues

Directional Arrows

- Turn Left
- Go Straight
- Turn Right

Relative Location Updates

- Location Marker
- Navigation Circle
- Map Interface: Current location on the map
- Video Interface: Current direction of the destination
Map Interfaces

Directional Arrow
- Turn-by-Turn Update

Relative Location Update
- Real Time Update

Map Interface with Directional Arrow

Map Interface with Location Marker
Map Interfaces

Directional Arrow
Turn-by-Turn Update

Relative Location Update
Real Time Update

Lazy Approach

Hard Approach

Map Interface with Directional Arrow

Map Interface with Location Marker
Video Interfaces

Directional Arrow
Turn-by-Turn Update

Relative Location Update
Real Time Update

Video Interface with Directional Arrow

Video Interface with Navigation Circle
Video Interfaces

Directional Arrow
- Turn-by-Turn Update

Relative Location Update
- Real Time Update

Lazy Approach

Hard Approach

Video Interface with Directional Arrow

Video Interface with Navigation Circle
Getting There and Beyond: Incidental Learning of Spatial Knowledge with Turn-by-Turn Directions and Location Updates in Navigation Interfaces, SUI 2018
Research Question

More Navigation Cues \sim More Spatial Knowledge
More is better

But

The navigation tools (reference frame and navigation cues) will have to work coherently.
<table>
<thead>
<tr>
<th>Interface Designs</th>
<th>Allocentric Encoding</th>
<th>Egocentric Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map (📍)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Map (📍📍)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (📍📍📍)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (📍📍📍📍)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Hypotheses

<table>
<thead>
<tr>
<th>Interface Designs</th>
<th>Allocentric Encoding</th>
<th>Egocentric Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map (📍)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Map (📍📍)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (📍)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (📍📍)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interface Designs</td>
<td>Allocentric Encoding</td>
<td>Egocentric Encoding</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Map (📍)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Map (📍📍)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (⬆️)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Video (⬆️⬆️)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Study Design

User Study

60 Participants

15 Participants

15 Participants

15 Participants

15 Participants
User Study Design

Assisted Navigation Tasks

Tests to measure Incremental Survey Knowledge

Completed 4 Tasks?

Test to measure Integrated Survey Knowledge

Tests to measure Route Knowledge

Completed 3 Tasks?

End
User Study Design

Assisted Navigation Tasks

Tests to measure Incremental Survey Knowledge

Completed 4 Tasks?

No

Test to measure Integrated Survey Knowledge

Yes

Tests to measure Route Knowledge

Completed 3 Tasks?

No

Orientation Test

Path Recall Test

Yes

End
User Study Design

Assisted Navigation Tasks

Tests to measure Incremental Survey Knowledge

Completed 4 Tasks?

No → Test to measure Route Knowledge

Completed 3 Tasks?

No → Orientation Test

Yes → Test to measure Integrated Survey Knowledge

Yes → Path Recall Test

End
User Study Design

Assisted Navigation Tasks

Tests to measure Incremental Survey Knowledge

Completed 4 Tasks?

Yes

Test to measure Integrated Survey Knowledge

Tests to measure Route Knowledge

Completed 3 Tasks?

No

No

Orientation Test

Path Recall Test

Floor Plan Recall Test

No

Yes

End
Tests to measure Route Knowledge

1. Location Recognition Test
2. Unassisted Navigation Test
Results

<table>
<thead>
<tr>
<th>Tests</th>
<th>Orientation Test</th>
<th>Path Recall Test</th>
<th>Floor Plan Recall Test</th>
<th>Location Recognition Test</th>
<th>Unassisted Navigation Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Thumb Up]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Up]</td>
</tr>
<tr>
<td></td>
<td>![Thumb Up]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Up]</td>
</tr>
<tr>
<td></td>
<td>![Thumb Up]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Up]</td>
</tr>
<tr>
<td></td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Up]</td>
<td>![Thumb Up]</td>
</tr>
<tr>
<td></td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Down]</td>
<td>![Thumb Up]</td>
<td>![Thumb Up]</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Tests</th>
<th>✔️</th>
<th>✔️</th>
<th>✔️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path Recall Test</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Floor Plan Recall Test</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Location Recognition Test</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Unassisted Navigation Test</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Tests</th>
<th>Orientation Test</th>
<th>Path Recall Test</th>
<th>Floor Plan Recall Test</th>
<th>Location Recognition Test</th>
<th>Unassisted Navigation Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Matched our hypothesis
<table>
<thead>
<tr>
<th>Tests</th>
<th>Orientation Test</th>
<th>Path Recall Test</th>
<th>Floor Plan Recall Test</th>
<th>Location Recognition Test</th>
<th>Unassisted Navigation Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Orientation Test</td>
<td>Path Recall Test</td>
<td>Floor Plan Recall Test</td>
<td>Location Recognition Test</td>
<td>Unassisted Navigation Test</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beyond our hypothesis
Incoherent cues were distracting.

They can negatively effect the performance of the users.
Map and Video-based Reference Frames can complement each other.
Combining Map and Video

Map-based FR With a Video Window

Video-based FR With a Map Window
Results

Map-based FR with both Arrow and Location Marker

Map-based FR with a Video Window

Video-based FR with Navigation Circle

Video-based FR with a Map Window
Results

Map-based FR with both Arrow and Location Marker

Video-based FR with Navigation Circle

Map-based FR with a Video Window

Video-based FR with a Map Window
Results

Location Recognition Test

Map-based FR with both Arrow and Location Marker

Map-based FR with a Video Window

Video-based FR with a Map Window
Results

Video Screen too Small

Map-based FR with both Arrow and Location Marker

Location Recognition Test

Map-based FR with a Video Window

Video-based FR with a Map Window
• Having more cues is not always beneficial for acquiring spatial knowledge. It is only beneficial when the cues coherently complement each other.

• Combining Map- and Video-based interfaces can benefit users in acquiring incidental spatial knowledge.
Future Work

Toys teaching spatial skills

Sensory aided landmarks learning
Thank You

Sanorita Dey
Prof. Wai Fu
Prof. Karrie Karahalios

University of Illinois at Urbana-Champaign

Contact
Email: sdey4@illinois.edu
Website: http://sdey4.web.engr.illinois.edu