A Scalable Online Platform for Evaluating and Training Engineering Students’ Visuospatial Skills

Ziang Xiao
Sanorita Dey
James M. Leake
Yuqi Yao
Helen Wauck
Brain S. Woodard
Eric Chi-Hsien Yen
Angela Wolters
Wai-Tat Fu

University of Illinois at Urbana-Champaign
•Intro
•Platform
•Platform Evaluation
•Evaluation Result
•Future Work
Intro

Visuospatial skill the capacity to understand, reason and remember the spatial relations among objects or space.
Intro

Students’ visuospatial skills are important for:

- Learning
- Future performance
- Retention rates
- Career choices in the STEM field.

(Lubinski, 2010; Veurink, and Hamlin, 2011; Veurink, & Sorby, 2012)
Intro

Researchers and instructors have put a lot of effort into evaluating and training students’ visuospatial skills.
However

Previous methods often rely on

- Traditional paper-based evaluation method
- Face-to-face workshop

which are **time-consuming** and **costly** especially for **large** classes.
Online Platform

Our online platform is designed to offer

• a comprehensive assessment of visuospatial skills with multiple choice questions and free-hand sketching
• exercises that help students to acquire strategies to more effectively perform visuospatial problem-solving

on a large scale.
Features

- Automatic grading
 - Intermediate Feedback
- Data management
 - Nation-wide database
- Fine-grained behavior data collection
 - Student’s problem solving strategy
- Student’s performance tracking
 - Individualized learning
Workshop

The content of the online workshop was adopted Sorby’s (2011) “Developing Spatial Thinking”.
Platform Demo

Demo
Platform Evaluation

Pre course PSVTR test → Course → Workshop (Through the Platform) → Post course PSVTR test
Participants

Pre-test Participants

Total of 624 students from AE199 (Computer-Aided Design), GE101 (Engineering Graphics & Design), TAM 210 (Intro to Statics) and TAM 211 (Statics) used our platform to conduct the PSVTR test at the beginning of the semester.
Workshop Participants

We recruited 30 students (PSVT:R score M=21.3) from GE101 and AE199 to participate in our workshop. Total of 17 students completed all the tasks.
Result

$t = 2.35, p = .03.$
Result

Comparison of improvement between students in the workshop and students not in the workshop

$t = 2.418, p = .02.$
Result

Comparison of improvement between students with low pre-test score and students with high pre-test score

$t = -2.017, p = .08$.

Graph showing the comparison of improvement between high-pretest and low-pretest students.
Interview Result

Students normally spent 38 min on the exercise each week.

88% Students like the flexibility of the online platform.

- They often took the task after 7:00 pm or during the weekend.
Conclusion

The preliminary study shows that online platform can effectively evaluate the visuospatial skills in a large scale and train the visuospatial skills with very low cost.
Future plan

• Automatic grading on free-hand sketching problems
• Error pattern analysis
• Individualized hints / training
• Apply to a larger scale (e.g. incoming freshman)
Acknowledgement

College of Engineering AE3
for funding this project

Instructors and Teaching Assistants from GE101 and AE199
for encouraging students to participate in our study